
Channel pressure to poly-AT conversion scripts
User’s Manual (sort of)

Gabriel Pasquali (gabpas64  _at_  hotmail.com)

This document should be included in the docs subfolder of the midipressure_to_polyAT folder.

The midipressure_to_polyAT folder contains three simple JSFZ scripts: midipressuretopoly,
midipressuretopolylag and midipressuretopolylagdel

Installation

In a host like Cantabile (or others) the script must be loaded into ReaJS (which is part of the
ReaPlugs free package: https://www.reaper.fm/reaplugs/ ) and the MIDI output from your
controller has to pass through ReaJS before going to the VST plugin, which in turn should be
able to use poly-AT.

To make ReaJS see the scripts, the files midipressuretopoly, midipressuretopolylag  and
midipressuretopolylagdel must be placed into the midi folder of ReaJS (for instance
path_to_your_installed_vst_plugins\ReaPlugs\JS\Effects\midi).
Then use the "load" button in ReaJS to load the scripts (e.g. Load->midi->midipressuretopoly).
WARNING: Do not place other files (this doc, for instance) in the same folder as the script (or in
any folder where ReaJS looks for scripts, otherwise ReaJS will try to interpret it as a script,
which of course it is not ;-) ).

In Reaper, the installation is a bit different (many thanks to cpaolo at Cantabile Forum for
checking that it works):

● select menu "Options->Show REAPER resource path in explorer/finder";
● open the Effects folder in explorer/finder and copy the file "midipressuretopolylag" into

the MIDI folder;
● refresh the plugin browser in Reaper

midipressuretopoly

midipressuretopoly is a little script which converts "Channel Pressure" data (i.e. monophonic
aftertouch, which applies to all notes played) to Polyphonic After Touch messages (which
contain info about which note they must be applied to). The note to which aftertouch is applied
is the last note played. The script should receive at its input MIDI messages from a controller
able to generate channel (monophonic) pressure messages.The output of the script should be
connected to the MIDI input of a device (e.g. VST plugin) able to handle polyphonic aftertouch
messages.

https://www.reaper.fm/reaplugs/


This idea of pseudo-poly-AT based on the last note played has already been implemented in the
past (e.g. Memory Moon's ME-80, Cherry Audio's GX-80 VST plugin). It's the sort of Columbus'
egg one would have liked to think about first...but I am glad anyway that someone did think
about it.

In short, that's what the script does:

● if a NOTE ON is received, the note is "latched", a poly-AT=0 is sent for that note
(as a reset), the NOTE ON message is forwarded to the midi output (i.e. to your
instrument VST); before all that, however, if the “Reset Held Notes” option has
been selected, the poly-AT is set to zero for the previously latched note which as
a consequences loses the modulation;

● if a NOTE OFF is received, a poly-AT value of zero 0 is sent for that note;
moreover, if the released note is the one latched for poly-AT, we reset the latched
value  (it is set to -1); the  NOTE OFF is also forwarded to the midi output;

● if a CHANNEL PRESSURE message is received and the latched note is not
minus one (i.e. it is a legit note value), a poly-AT message is sent for that note
(with the value of the pressure taken from the received message) instead of the
channel pressure message (which is not transmitted); this last point is of course,
THE point of all of this;

● all other incoming midi messages are forwarded as they are to the output.

There are very few controls in the midipressuretopoly window (see picture below):
(1) Select the channel (1-16) on

which the plugin listens for
incoming notes and channel
pressure messages;

(2) If “Reset held notes” is on “Yes”, a
null poly-AT message will be sent
for the previously latched note
when a new key is pressed (i.e. its
poly-AT will be reset, even when
the previous note is still pressed).
Otherwise, the previous note will
maintain its last poly-AT level;

(3) If status is “Active”, incoming MIDI
messages are processed as
explained above; otherwise, the
script acts as a MIDI THRU.



midipressuretopolylagdel and midipressuretopolylag

These scripts are improved versions with respect to  "midipressuretopoly". They are identical,
except for the “Release delay” parameter, which is missing in midipressuretopolylag.

PRINCIPLE OF OPERATION:

● If a NOTE ON is received, the note is "latched", a poly-AT=0 is sent for that note (as a
reset), the NOTE ON message is forwarded to the midi output (i.e. to your instrument
VST); before all that, however, if the “Reset Held Notes” option has been selected, the
poly-AT for the previously latched note goes to zero either exponentially or
linearly (according to the Exponential/Linear selector). For exponential transitions,
the time constant is set by the "Release" slider and the transition lasts about 4-5 times
the set Release" value (*). For linear transitions, the total transition time is set by the
Release slider. Therefore, at variance with midipressuretopoly, the poly-AT for the
previously latched note is not set to zero immediately; even more important, the poly-AT
value of the new note is not set immediately to the current value of CHANNEL
PRESSURE. Instead, it goes up either exponentially or linearly (according to the
Exponential/Linear selector). For exponential transitions, the time constant is set by the
"Attack" slider and the transition lasts about 4-5 times the set value. For linear
transitions, the total transition time is set by the "Attack" slider.

● If a NOTE OFF is received, a poly-AT=0 is sent for that note, unless the released note is
the one latched for poly-AT: in the latter case, we reset the latched value (it is set to -1);
the NOTE OFF is also forwarded to the midi output and the poly-AT of the released
note goes to zero according to the Release time value.

● If a CHANNEL PRESSURE message is received and the latched note is not minus one
(i.e. it is a legit note value), a poly-AT message is sent for that note (with the value of the
pressure taken from the received message) instead of the channel pressure message
(which is not transmitted); this last point is of course, THE point of all of this. However, if
the note is in the “Attack” phase, the new pressure value will not be reached
immediately: the attack phase will go on until the current pressure value is reached.



This behavior can be seen in the picture below: the horizontal lines represent the notes which
have been played (a different
color for each note, which is
drawn at an ordinate
corresponding to the MIDI
value of the note itself). The
curves (which follow the same
color scheme) represent the
poly-AT messages generated
by the script. For instance, at
about time=3 seconds, a new
note is pressed (in blue) so
that the poly-AT value of the
first note (in red) starts to
decrease (release phase)
while the poly-AT of the new
note increases (attack phase).

(*)  The exponential transition is like that of a RC low pass filter (one pole). The Attack and
Release values basically set the RC value of the simulated RC circuit.

Only in midipressuretopolylagdel:

This version of the script introduces a delay before the start of the release phase, so that the
poly-AT value of the old note is kept (for a time interval equal to the delay)  while the poly-AT of

the new note increases. This feature allows for smoother transitions as shown in the picture.



Here is the control window of midipressuretopolylagdel:
(1) Select the channel (1-16) on which the plugin listens for incoming notes and channel

pressure messages;
(2) If “Reset held notes” is on

“Yes”, a null poly-AT message
will be sent for the previously
latched note when a new key is
pressed (i.e. its poly-AT will be
reset, even when the previous
note is still pressed).
Otherwise, the previous note
will maintain its last poly-AT
level;

(3) If status is “Active”, incoming
MIDI messages are processed
as explained above; otherwise,
the script acts as a MIDI THRU;

(4) The “Attack” slider sets either
the time constant (exponential
attack) or the total transition
time (linear attack) in
milliseconds;

(5) The “Release” slider sets either the time constant (exponential release) or the total
transition time (linear release) in milliseconds;

(6) The “AT update” slider sets the time interval (in samples) between poly-AT updates
during the attack and release phases; the smaller the value, the greater the number of
messages sent for a given attack or release time.

(7) Selects between exponential and linear attack/release
(8) A Release delay greater than zero introduces a delay before the onset of the release

phases, thus producing smoother transitions between the poly-AT values of consecutive
notes (only in
midipressuretopolylagdel).

Finally, an example of linear
transitions with release delay:



APPENDIX

The midipressure_to_polyAT folder also contains a parse_midi folder. The folder contains a
python script used to generate the pictures with the notes and poly-AT values.
The script needs the following packages: mido, numpy, matplotlib. First record the output of the
JSFX script (e.g. midipressuretopolylagdel) in a midifile. Then run the python script as follows:

python parse_midi.py midifile


